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ABSTRACT 

The triply diffusive convection in couple-stress fluid is mathematically investigated in the presence of 

uniform vertical magnetic field through porous medium. Using linearized stability theory and normal 

mode analysis, the dispersion relation is obtained. The magnetic field, couple-stress parameter and stable 

solute gradients are found to have stabilizing effects, whereas medium permeability has a destabilizing 

effect for stationary convection. Further, solute gradients, couple-stress parameter and magnetic field are 

found to introduce oscillatory modes, which were non-existent in their absence. The sufficient conditions 

for the non-existence of over stability are also obtained.  
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1. INTRODUCTION 

The thermal instability of a fluid layer heated from below plays an important role in geophysics, 

atmospheric physics, oceanography etc., and has been investigated by many authors, e.g. Be'nard (1900), 

Rayleigh (1916), Jeffreys (1926). A detailed account of the theoretical and experimental studies of so 

called Be'nard convection in Newtonian fluids has been given by Chandrasekhar (1981). 

Thermal convection is the most convective instability when crystals are produced from single 

element like silicon. However, gallium arsenide and other semi-conductors which require crystals made 

from compounds of elements are beginning to take on a prominent position in modern technologies. 

Hence, at present there is strong industrial demand for understanding the additional effects that can occur 

in the solidification of a mixture, which is not possible in one component system. The problem of 

thermohaline convection in a fluid layer heated from below and subjected to a stable salinity gradient has 

been considered by Veronis (1965). The buoyancy force can arise not only from density differences due 

to variations in temperature but also from those due to variations in solute concentration. Double-

diffusive convection problems arise in oceanography (salt fingers occur in the ocean when hot saline 

water overlies cooler fresher water which believed to play an important role in the mixing of properties in 

several regions of the ocean), limnology and engineering. There are many situations in which double-

diffusive convection is involved like migration of moisture in fibrous insulation, underground disposal of 

nuclear waste, groundwater, bio/chemical contaminants transport in environment, magmas, high quality 

crystal production and production of pure medication. 

  Although the subject of double-diffusive convection is still an area of active research, however, 

there are many fluid dynamical systems occurring in industrial applications and nature involve three or 

more stratifying agencies having different molecular diffusivities. More complex systems can be obtained 

in magmas and molten metals (Jakeman and Hurle (1972)). This has prompted researchers to study 

convective instability in triple diffusive fluid systems both theoretically and experimentally (Turner 

(1985), Terrones and Pearlstein (1989),  Pearlstein et al. (1989), Lopez et al. (1990)). The effects of 

cross-diffusion on the horizontally unbounded triply cross-diffusion fluid layer have been investigated by 

Terrones (1993). Straughan and Walker (1997) have analyzed various aspects of penetrative convection 

in a triply diffusive fluid layer, while multicomponent convection-diffusion with internal heating or 

cooling in a fluid layer has been discussed by Straughan and Tracery (1999). 
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The previous studies on triple diffusive convection in a fluid layer are dealt with only Newtonian 

fluid theory. As propounded earlier, many fluid dynamical systems such as molten polymers, 

geothermally heated lakes, salt solutions, slurries, magmas and their laboratory models, synthesis of 

chemical compounds usually involve more than two diffusing components and can be well characterized 

by couple stress fluid theory rather than Newtonian theory. The couple-stress fluid theory represents the 

simplest generalization of the classical viscous fluid theory that allows for polar effects and whose 

microstructure is mechanically significant in fluids. For such a special kind of non-Newtonian fluids, the 

constitutive equations are given by Stokes (1966) which allows the sustenance of couple-stresses in 

addition to usual stresses. 

Many of the flow problems in fluids with couple-stresses, discussed by Stokes, indicate some 

possible experiments, which could be used for determining the material constants, and the results are 

found to differ from those of Newtonian fluid. Couple-stresses are found to appear in noticeable 

magnitudes in polymer solutions for force and couple-stresses. This theory is developed in an effort to 

examine the simplest generalization of the classical theory, which would allow polar effects. The 

constitutive equations proposed by Stokes (1966) are: 

    ijijkkij D2DpT  ,   sijskk.ijij G
2

W2T 





,  

and j,ii,jij 44M 


, 

where     
i,jj,iiji,jj,iij VV

2

1
W,VV

2

1
D 


 

and  j,kijki V
2

1



  .  

Here ,Tij   ,T ij    ,T ij  ijM , ijD  , j,iW


, i


, sG , ijk


, V,   and  ,  ,  ,  , are stress tensor, 

symmetric part of ,Tij anti-symmetric part of ,Tij  the couple-stress tensor, deformation tensor, the 

vorticity tensor, the vorticity vector, body couple, the alternating unit tensor, velocity field, the density 

and material constants respectively. The dimensions of   and   are those of viscosity whereas the 

dimensions of   and   are those of momentum.  

Goel et al. (1999) have studied the hydromagnetic stability of an unbounded couple-stress binary 

fluid mixture under rotation with vertical temperature and concentration gradients. Kumar et al. (2004) 

have considered the thermal instability of a layer of a couple-stress fluid acted on by a uniform rotation, 

and have found that for stationary convection, the rotation has a stabilizing effect whereas couple-stress 

has both stabilizing and destabilizing effects. Thermosolutal convection in a couple-stress fluid in 

presence of magnetic field and rotation, separately, has been investigated by Kumar and Singh (2008, 

2009). Kumar and Kumar (2010) studied the problem on a couple-stress fluid heated from below in 

hydromagnetics and found that magnetic field has a stabilizing effect on the system. The effect of 

magnetic field on an incompressible (Kuvshiniski-type) viscoelastic rotating fluid heated from below in 

porous medium is considered by Kumar and Kumar (2013) and found that magnetic field play stabilizing 

role in certain conditions.  

Recently, interest in viscoelastic flows through porous media has grown considerably, due largely 

to the demands of such diverse fields as biorheology, geophysics, chemical, and petroleum industries.  

Keeping in mind the importance in various fields particularly in the soil sciences, ground water-

hydrology, geophysics, astrophysics and bio-mechanics, the triply diffusive convection in couple-stress 

fluid through porous medium in the presence of magnetic field has been considered in the present paper.  

  

2. FORMULATION OF THE PROBLEM 

Here we consider an infinite, horizontal, incompressible couple-stress fluid layer of thickness d , heated 

and soluted from below so that, the temperatureT and solute concentrations 
(1)C  and 

(2)C  at the bottom 

surface 0z   are (1)

0 0,T C  and (2)

0C ; and at the upper surface z d  are (1),d dT C  and (2)

dC respectively, and 
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a uniform temperature gradient 
dT

dz

 
 
 

 and uniform solute gradients
(1)

'
dC

dz

 
 
 

 and 

(2)

''
dC

dz


 
 
 

are maintained. The gravity field  0, 0,g g


 and a uniform vertical magnetic field 

 0, 0,H H


 pervade the system. 

When  fluid  flows  through  a  porous  medium,  the  gross effect  is  represented by Darcy’s  law, the 

equations of motion and continuity  for couple-stress fluid through porous medium become 

 2

0 0 1 0 0

1 1 1 1
( . ) 1

4

ev
v v p g v H H

t k

       
                            

     
,        (1) 

. 0v 


,                  (2) 

where v
r

is  the  filter  velocity,    is  medium  porosity, 
1k   is  the  medium permeability and  /   

the kinematic viscosity and   the couple-stress viscosity.  The fluid velocity q


 and the Darcian (filter) 

velocity v


are connected by the relation /q v 
 

. A porous medium of very low permeability allows us to 

use the Darcy’s model. For a medium of very large stable particle suspension, the permeability tends to 

be small justifying the use of Darcy’s model. This is because the viscous drag force is negligibly small in 

comparison with Darcy’s resistance due to the large particle suspension.  

When  the  fluid  flows  through  a  porous  medium,  the  equation  of  heat conduction is 

2( (1 )) ( . )f s s f

T
c c c v T T

t


      



r
              (3) 

and analogous solute concentration equations are 
(1)

(1) 2 (1)( (1 )) ( . )f s s f

C
c c c v C C

t

          


r
                          (4) 

(2)
(2) 2 (2)( (1 )) ( . )f s s f

C
c c c v C C

t

           


r
,                              (5) 

The Maxwell’s equations yield 

2( . )
dH

H v H
dt

    


 

,
                       

(6) 

. 0.H 
r

                         
(7) 

where 1 .
d

v
dt t

 
  



. Since density variations are mainly due to variations in temperature and solute 

concentrations, the equation of state for the fluid is given by 
(1) (2)

0[1 ( ) ( ) ( )],a a aT T C C C C                       (8) 

where 
0, , , , , , , ,t           and  are the fluid density, reference density, time, the kinematic 

viscosity, the thermal diffusivity, the solute diffusivities, thermal and solvent coefficients of expansion 

respectively. aT  is the average temperature given by 0

2

d
a

T T
T


 where 0T  and dT  are the constant 

average temperatures of the lower and upper surfaces of the layer and (1)

aC , (2)

aC  are the average 

concentrations given by 
(1) (1)

(1) 0

2

d
a

C C
C


  and 

(2) (2)
(2) 0

2

d
a

C C
C


 , where (1)

0C , (1)

dC and (2)

0C , (2)

dC are 

constant average concentrations of the lower and upper surfaces of the layer. Here (1 ) s s

f

c
E

c


   


 is a 

constant, E and Eare analogous to E but corresponding to solute rather than heat. , fc ; ,s sc  stand for 

density and heat capacity of fluid and solid matrix, respectively. 
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3. BASIC STATE AND PERTURBATION EQUATIONS 

The basic state was assumed to be quiescent and is given by 

(0, 0, 0),v 
r

(0, 0, ),bH H
r

( ),bT T z ( ),bp p z (1) (1) ( )bC C z , (2) (2) ( )bC C z , ( )b z   ,

( )b aT z T z  , (1) (1)( ) ,b aC z C z  (2) (2)( )b aC z C z  with
(1) (1) (2) (2)

0 [1 ( ) ( ) ( )]b b a b a b aT T C C C C          .                   (9)  

To use linearized stability theory and normal mode technique, we assume small perturbations on the 

basic state solution. Let ( , , ) 0 ( , , )v u v w v u v w   
r r

, 
b
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,
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bT T T   , (1) (1) (1)

bC C C   and (2) (2) (2)

bC C C   denote, respectively the perturbations in the fluid 

velocity, density, pressure, temperature and concentrations. The change in density ' caused mainly by 

the perturbations in temperature and concentrations is given by 
(1) (2)
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Then the linearized hydromagnetic perturbation equations are 
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Analyzing the perturbations into normal modes, we assume that the perturbation quantities are of the 

form 

 (1) (2), , , , ( ), ( ), ( ), ( ), ( ) exp{ },z x yw T C C h W z z z z K z ik x ik y nt     
 

Q G Y
     

(18) 

where xk and yk are the wave numbers in x and y directions respectively, 2 2 1/ 2( )x yk k k  is the 

resultant wave number of propagation and n  is the frequency of any arbitrary disturbance which is, in 

general, a complex constant. Using equation (18), equations (11) to (17) in non-dimensional form become 

             
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*D dD [(*) is dropped for convenience].  

Now considering the case where both boundaries are free as well as perfect conductors of both 

heat and solute concentrations, while the adjoining medium is perfectly conducting. The case of two 

boundaries is a little artificial but it enables us to find analytical solutions and to make some qualitative 

conclusions. The appropriate boundary conditions, with respect to which equations (19)-(23) must be 

solved are 

 20, 0, 0, 0, 0W D W    Q G Y at 0z  and 1z  . 

 0K   on a perfectly conducting boundary and , ,x y zh h h are continuous with an external vacuum 

field on a non-conducting boundary.          (24) 

The case of two free boundaries, though a little artificial, is the most appropriate for stellar atmospheres 

(Spiegel, 1965). Using the above boundary conditions, it can be shown that all the even order derivatives 

of W  must vanish for 0z   and 1z   and hence the proper solution of W  characterizing the lowest 

mode is 

0 sinW W z ,             (25) 

where 0W  is constant. On eliminating various physical parameters from equations (19)-(23) and 

substituting the proper solution (25) in the resultant equation, we obtain the final dispersion relation as 

   
  

 
1 11 1

1 1 1 1

2 1

1 11 1
1 1

1

iEpi F
R iEp Q

P P ip

        
           
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Here, 
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1 2

04

e H d
Q
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
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.

  

4. STATIONARY CONVECTION 

When the instability sets in as stationary convection, the marginal state will be characterized by 0 

. Putting 0  , the dispersion relation (26) reduces to 

     
2 3

1

1 1 1 2

1 1 1F
R Q S S

P P

  

  

  
     ,          (27) 

which expresses the modified Rayleigh number 1R  as a function of the dimensionless wave number   

and the parameters 1 1 2 1, , ,Q S S F  and P .  

To study the effect of solute gradients, magnetic field, couple-stress viscosity and medium permeability, 

we examine the nature of 1 1 1 1

1 2 1 1

, , ,
dR dR dR dR

dS dS dQ dF
 and 1dR

dP
 analytically. 

From equation (27), we have 

1

1

1
dR

dS
 and 1

2

1
dR

dS
 , 

             
(28)

 

which show that solute gradients have stabilizing effect on the triple diffusive convection in couple-stress 

fluid. 

Equation (27) also yields 

1

1

(1 )dR

dQ

 



,   

     

     

 
(29) 

which show that magnetic field has stabilizing effect on the triple diffusive convection in couple-stress 
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fluid. 

Also equation (27) gives 

 
3

1

1

1dR

dF P






 ,                                                                                                                

 (30) 

which shows that couple-stress parameter has stabilizing effect.  

From equation (27), we have 

 
2

1

12

(1 )
1 1

dR
F

dP P


     

,

 

                                                              
(31)

 which shows that medium permeability has a destabilizing effect on the system. 

 

5. SOME IMPORTANT THEOREMS 

Theorem 1: The system is stable or unstable.  

Proof: Multiplying equation (19) by W*, the complex conjugate of W, integrating over the range of z, 

and making use of equations (20)-(23) together with boundary conditions (24),  we get  
2 2

* *

1 2 1 3 4 1 5

1
[ ] [ ]

l

g a g a
I I Ep I I E q I
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2
* *

6 2 7 8 2 9 10

0

[ ] [ ] 0
4

e

l

g a F
I E q I I p I I

P

    
       

  
.  (32) 

Here  2 2 2

1 | | | |I DW a W dz  ,  2 2 2

2 | | | |I D a dz  Q Q , 2

3 | |I dz  Q , 

 2 2 2

4 | | | |I D a dz  G G , 2

5 | |I dz  G ,  2 2 2

6 | | | |I D a dz    , 2

7 | |I dz  , 

 2 2 2 2 4 2

8 | | 2 | | | |I D K a DK a K dz   ,  2 2 2

9 | | | |I DK a K dz  , 

 2 2 22 2 4

10 2I D W a DW a W dz   ,           (33) 

and *  is the complex conjugate of  . The integrals 1 10I I  are all positive definite. Substituting 

r ii      in equation (32), where r and i  are real and then equating the real and imaginary parts, we 

get
 

2 2 2

1
1 3 1 5 2 7 2 9

04

e
r

I g a g a g a
Ep I E q I E q I p I

     


     

         
          

       
= 

                                       
2 2 2

1
2 4 6 8 10

04

e

l l

I g a g a g a F
I I I I I

P P

     

    

    
      

  
      

 (34) 

and 
2 2 2

1
1 3 1 5 2 7 2 9

0

0
4

e
i

I g a g a g a
Ep I E q I E q I p I

     


     

         
           

       
.       (35) 

It is evident from equation (34) that r  is positive or negative. The system is, therefore, stable or 

unstable.  

Theorem 2: The modes may be oscillatory or non-oscillatory in contrast to the case of no magnetic field 

and in the absence of stable solute gradients and couple-stress parameter where modes are non-

oscillatory. 

Proof:  Equation (35) yields that i may be zero or non-zero, which means that the modes may be non-

oscillatory or oscillatory. In the absence of solute gradient, couple-stress parameter and magnetic field, 

equation (35) reduces to  
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2

1
1 3 0i

I g a
Ep I




 

  
   
  

,           

 (36) 

and the terms in brackets are positive definite. Thus i = 0, which means that oscillatory modes are not 

allowed and the principle of exchange of stabilities is valid for the couple-stress fluid for a porous 

medium, in the absence of stable solute gradient, couple-stress parameter and magnetic field. The 

oscillatory modes are introduced due to the presence of stable solute gradient, couple-stress parameter 

and magnetic field, which were non-existent in their absence. 

Theorem 3: The system is stable for 
427

4

lg P

F

 


  and under the condition

427

4

lg P

F

 


 , the system 

becomes unstable. 

Proof:  From equation (35), it is clear that i is zero when the quantity multiplying it is not zero and 

arbitrary when this quantity is zero. 

If i  0 , then equation (35) gives 
2 2

1

1 3 1 5 2 7 2 9

04

eI g a g a g a
Ep I E q I E q I p I

     

     

       
              

,  (37)                

Substituting in equation (34), we have  
2 2 2

1
1 4 6 8 10 2

0

2

4

er

l l

I g a g a F g a
I I I I I I

P P

      

     

   
     

 
.                                    (38) 

Equation (38) on using Rayleigh-Ritz inequality gives  

   
3

2 2 2 21 2 2
2 1 1

8 4 62 2

00

2

4

l e r

l

a a P I Ig a g a
W dz I I I

a a F P

       

    

      
     

  
  

                                                           
1

2

0

lg P
W dz

F




  .     (39) 

Therefore, It follows from equation (39) that  
14 2 2 2 2

2 1 1
8 4 62

00

227

4 4

l l e r

l

g P P I Ia g a g a
W dz I I I

F a F P

        

     

       
               

  

                                                                            0 .     (40) 

Since minimum value of 
 

2

322

a

a
 with respect to a

2
 is

4

27 4
. Now, let r  0, we necessary have from 

(40) that  
427

4

lg P

F

 


 ,          (41) 

Hence, if 
427

4

lg P

F

 


 ,            (42) 

then r < 0. Therefore, the system is stable. Therefore, under condition (42), the system is stable and 

under condition (41) the system becomes unstable. 

Theorem 4: The sufficient conditions for the non-existence of overstability are 1 1 1 2,Ep E q Ep E q  

and 1 2Ep p
.
 

Proof: Equating the real and imaginary parts of equation (26) and eliminating 1R
 
between them, we 

obtain 
3 2

3 1 2 1 1 1 0 0A c A c Ac A    ,            (43)                                                                

Here, 2

1 1c  , 1b   ,  
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 
2

2 2 2 2 2 1 1 1
3 1 2 2 1

Ep EF p bb
A E E q p q b b

P P

  
      

  
,         (44) 

and       
7 88

61 1 1
0 1 1 2 1 1 1 2 1 2

Ep b EF p bb
A Q Ep p b S Ep E q S Ep E q

P P

 
          

 
 

5( 1) ( 1)b b b  .     (45) 

The coefficients 
2A  and 

1A  being quite lengthy and not needed in the discussion of over stability, have 

not been written here.  

Since 
1 is real for over stability i.e. the three values of 2

1 1( )c  should be positive. The product of roots 

of equation (43) is 0

3

A

A
 , and if this is to be negative, then 3A  and 0A are of the same sign. Now the 

product of roots is negative if  

1 1 1 2,Ep E q Ep E q   and 1 2Ep p .        (46) 

Thus, if conditions (46) are satisfied, over stability is impossible and the principle of exchange of 

stabilities holds true. Therefore, equations (46) are the sufficient conditions for the non-existence of over 

stability, the violation of which does not necessary involve occurrence of over stability. 

 

6. NUMERICAL RESULTS AND DISCUSSION 

For the stationary convection, critical thermal Rayleigh number for the onset of instability is determined 

for critical wave number. In Fig. 1, critical Rayleigh number
1

R is plotted against solute gradient 

parameter
3

S for fixed values of 
2 1

20, 50, 10S Q F    and 0.1, 0.3, 0.5P  . The critical Rayleigh 

number increases with increase in solute gradient parameter, which shows that solute gradient has 

stabilizing effect on the system. In Fig. 2, variation of critical Rayleigh number
1

R is shown against solute 

gradient parameter
3

S for fixed values of 
2 1

20, 50, 0.3S Q P   and 3, 5, 8F  . The critical Rayleigh 

number increases with increase in solute gradient parameter, which shows that solute gradient has 

stabilizing effect on the system. In Fig. 3, variation of critical Rayleigh number
1

R is shown against solute 

gradient parameter
2

S for fixed values of 
1

50, 0.3, 5Q P F   and
3

10, 30, 50S  . The critical Rayleigh 

number increases with increase in solute gradient parameter, which shows that solute gradient has 

stabilizing effect on the system. In Fig. 4, critical Rayleigh number
1

R is plotted against couple-stress 

parameter F for fixed value of 
2 3

20, 30, 0.3S S P   and
1

20, 30, 40Q  . The critical Rayleigh number 

increases with increase in couple-stress parameter, which shows that couple-stress has stabilizing effect 

on the system. In Fig. 5, critical Rayleigh number
1

R is plotted against couple-stress parameter F for fixed 

value of
2 3 1

20, 30, 30S S Q   and 0.2, 0.4, 0.6P  . The critical Rayleigh number increases with 

increase in couple-stress parameter, which shows that couple-stress has stabilizing effect on the system. 

In Fig. 6, critical Rayleigh number
1

R is plotted against medium permeability P for fixed value of

2 3 1
20, 30, 20S S Q   and 2, 5, 8F  . The critical Rayleigh number decreases with increase in 

medium permeability, which shows that medium permeability has destabilizing effect on the system. In 

Fig. 7, critical Rayleigh number
1

R is plotted against medium permeability for fixed value of

2 3
20, 30, 3S S F    and

1
10, 40, 70Q  . The critical Rayleigh number decreases with increase in 

medium permeability, which shows that medium permeability has destabilizing effect on the system. In 

Fig. 8, critical Rayleigh number
1

R is plotted against magnetic field
1

Q for fixed value of

2 3
20, 30, 3S S F   and 0.2, 0.4, 0.6P  . The critical Rayleigh number increases with increase in 

magnetic field, which shows that magnetic field has stabilizing effect on the system. In Fig. 9, critical 

Rayleigh number
1

R  is plotted against magnetic field
1

Q for fixed value of
2 3

20, 30, 0.3S S P   and
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2, 5, 8F  . The critical Rayleigh number increases with increase in magnetic field, which shows that 

magnetic field has stabilizing effect on the system. 

 
Fig.1 Variations of critical Rayleigh number with solute gradient 

 
Fig.2 Variations of critical Rayleigh number with solute gradient  

 
Fig.3 Variations of critical Rayleigh number with solute gradient 
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Fig.4 Variations of critical Rayleigh number with couple-stress parameter 

 
Fig.5 Variations of critical Rayleigh number with couple-stress parameter 

       
Fig.6 Variations of critical Rayleigh number with medium permeability 
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Fig.7 Variations of critical Rayleigh number with medium permeability 

 

 
Fig.8 Variations of critical Rayleigh number with magnetic field 

 
Fig.8 Variations of critical Rayleigh number with magnetic field 

 

7. CONCLUSION 

The subject of double-diffusive convection is still an active research area, however, there are many 

fluid dynamical systems occurring in nature and industrial applications involve three or more stratifying 

agencies having different molecular diffusivities. More complicated systems can be found in magmas and 
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molten metals. This has prompted researchers to study convective instability in triply diffusive fluid 

systems. Motivated by this, the effect of uniform vertical magnetic field on triply diffusive convection in 

a layer of couple-stress fluid heated and soluted from below was considered in the present paper. 

The main conclusions from the analysis of this paper are as follows: 

(a) For the case of stationary convection the magnetic field, couple-stress parameter and solute gradients 

have stabilizing effect, whereas the medium permeability has destabilizing effect on the system. 

(b) It is observed that stable solute gradients, couple-stress parameter and magnetic field introduce 

oscillatory modes in the system, which was non-existent in their absence. 

(c) In the absence of stable solute gradients, couple-stress parameter and magnetic field, oscillatory 

modes are not allowed and the principle of exchange of stabilities is valid.  

(d) It is found that if  
F

Pg l




 

4

27 4
, the system is stable and under the condition   

F

Pg l




>

4

27 4
, 

the system becomes unstable. 

(e) The sufficient conditions for the non-existence of overstability are  

                              1 1 1 2,Ep E q Ep E q    and 1 2Ep p
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